Reasoned document of draft specification no. MP-0.41.00.07 (Rev. 01) for 'Technical specification & schedule of technical Requirements for long life spring pad assembly used in side buffers of BG locomotives Draft specification no. MP-0.41.00.07 (Rev. 01) 'Technical specification & schedule of technical Requirements for long life spring pad assembly used in side buffers of BG locomotives as per ISO procedure was uploaded on RDSO website for one month for comments/ suggestions. The draft specification was also sent to Zonal Railways, production units for comments and suggestions. M/s Prag Industries, Lucknow & M/s Surlon Durel springs pvt. Ltd., New Delhi submitted comments on draft specification. No any other approved/developmental vendor submitted their comments. No comments have been received from zonal Railways, production units and any other party so far. Reasoned Statement based on comments received by M/s Prag & M/s Surlon Durel (except Noted and complied) on draft spec is tabulated below: | Clause
of
Spec. | Clause as mentioned in draft specification | Comments by M/s Surlon Durel springs, New Delhi | Comments by M/s Prag Industries, Lucknow | Stipulation in the Draft spec. with reason | |-----------------------|---|--|--|---| | 2.1 | Material of spring pad should be Thermoplastic Elastomer (TPE) with high damping characteristic. The design shall be in one piece sandwich type stack. Material of separating metal plates used shall conform to IS: 2062 Fe410 WA and withstand buff load of 1000 kN | with high damping characteristic. The design shall be in one piece sandwich type stack. Material of separating metal plates used | Noted & Accepted | Agered with M/s Surlon Durel Para 2.1 has been revised as: Material of spring pad should be Thermoplastic Elastomer (TPE) with high damping characteristic. The design shall be in one piece sandwich type stack. Material of separating metal plates used shall conform to IS: 2062 Gr- E 250 A/ E 250 C and withstand buff load of 1000 KN Reason: Gr. Fe 410 WA in IS 2062 (2006) has been Revised to E 250 A in IS 2062 (2011). | | SN | Parameters
(buffer | Design
Requirements | Pre-Compression load at installed height 584 -0/+5 mm | These design requirements should be applicable for product development and type testing for product approval | | iled study is re
parameter. Hei | • | |---|--|---|--|---|---|---|---| | 1. | spring stack) Travel of spring pads assembly | 105 ⁰ mm (in Compression) | | | stage | e para reinstat
nal specificatio | ed as per | | 2. | End load | 1000 kN
(Max.) | | | SN | Parameters | Design | | 3. | Dynamic energy | 30 kJ (Min.) | | | 1. | (buffer spring stack) Travel of spring pads | 4050 ('a | | 4. | capacity Energy absorption | > 60 %, as per annexure | | | | assembly | Compression) | | | · | 1 | | | 2. | End load | 1000 kN
(Max.) | | 5. | Pre-
Compression | 10 kN to 15
kN | | | 3. | Dynamic
energy
capacity | 30 kJ (Min.) | | | load at installed height 584 mm | | | | 4. | Energy
absorption | > 60 %, as
per annexure
1 | | | 304 IIIII | | | | 5. | Pre-
Compression
load at
installed
height | 10 kN to 15
kN | | Char
Char
asse
acco
The
the obuffe
The
repur
EN/L | racteristics racteristics test embly shall b ordance with UI test shall be dor elastomer pad er manufacturer test facilities sh ted agency JIC/AAR or ar | & dynamic of TPE spring pads e carried out in IC 526-1/UIC 827-1 ne at the premises of manufacturer or the or the 3rd party lab. nall be certified by a in compliance to my other equivalent and standard for | static Characteristics & dynamic Characteristics test of TPE spring pads assembly shall be carried out in accordance with EN 15551. The test shall be done | Characteristics test of TPE Spring pads assembly shall be carried out in accordance with UIC 526-1/UIC 827-1 as a part of type test for product approval. These tests should not be part of regular purchase inspection test. | buffe syste and 1555 Acco revise 3.0 subject follow Capa static TPE be c with 827-manu pads | er housing em are similar UIC-526 acc if has also bee ordingly para 3 ed as: Design appro- ected to fulfill | cordingly EN en included. 3.1 has been oval shall be ment of the requirements durance test, ics test of ssembly shall a accordance C 526-1/UIC mises of the blier of spring the presence | #### 3.2 Static characteristics The following static characteristics shall The be checked in compression stroke on characteristics shall be checked spring pad assembly. spring pad assembly Initial force: between 10 and 15 kN Force following a 25 mm stroke: between 30 and 130 kN Force following a 60 mm stroke: between 130 and 400 kN Force following a 100 mm stroke: between 500 and 1000 kN stored energy (We) for an effort not exceeding 1000 kN ≥ 12.5 kJ These characteristics shall be measured at an ambient temperature approximately 15° C. The compression phase shall be followed immediately by the decompression phase, and the maximum displacement speed of the plunger in both directions must be comprised between 0.01 and 0.05 m/s. When fully released the buffer must be in the same condition as initially. #### Static characteristics following in compression stroke on spring pad assembly. (72hr after assembly) Initial force: between 10 and 15 Force following a 25 mm stroke: between 30 and 130 kN Force following a 60 mm stroke: between 130 and 400 kN Force following a 100 mm stroke: between 500 and 1000 kN stored energy (We) for an effort not exceeding 1000 kN ≥ 12.5 kJ Wa ≥ 0.5 We – For 1st cycle Wa ≥ 0.42 We - For 2nd & 3rd cycle. These characteristics shall be measured at an ambient temperature of approximately 15° C to 25° C. The compression phase shall be followed immediately by the decompression phase, and the maximum displacement speed of the plunger in both directions (shall be less or equal 0,05 m/s) must be comprised between 0.01 and 0.05 m/s. When fully released the buffer must be in the same condition as initially. The following static characteristics shall static be checked in compression stroke on Detailed study of the static Initial force: between 10 and 15 KN (to be Hence at this stage this para is checked after holding at the installed deleted and reverted as per height for 72 hrs. minimum.) Refer 2.2.1 of UIC 827-1 and 4.1 of UIC 526-1 Force following a 25 mm stroke: between 30 and 130 KN Force following a 60 mm stroke: between 130 and 400 KN Force following a 100 mm stroke: between 500 and 1000 KN stored energy (We) for an effort not exceeding 1000 KN ≥ 12.5 kJ These characteristics shall be measured at a standard laboratory temperature of approximately 27° C (In India, the ambient temperature of 15 °C is for a very short period of time). The compression phase shall be followed immediately by the decompression phase, and the maximum displacement speed in both directions must be 15+/-5 mm/minute to enable to record the load/pack height reading (As per present norm). When fully released the buffer pack must come back to same initial installed height. characteristics is required. Rev.00. | | | r | <u></u> | | |-----
--|--|--|---| | | Flexibility test | Flexibility testing not required for | 0.0 71 11 11 11 11 | Detailed study of the flexibility | | 3.3 | The flexibility test shall be carried out as follows: i. TPE rings are stacked in such a way as to form a spring as used in service. ii. The stack thus formed is tested on a test bench equipped with a chart recording device. The test bench shall be calibrated at least once in a year. ii. The spring is compressed 20 times to the maximum stroke i.e. 105 mm and the load maintained, each time, for 30 s, up to this stroke. | polymer springs. (Refer Annex C of EN 15551 for list of applicable test) | | test is required hence at this stage this para has been deleted. | | | v. The semi-static diagram is recorded. It shall comply to the static characteristics requirements given in Para 3.2 v. After tests the rings should show no breaks, defects signs of graphing or abrasions. | | v. After tests the rings should show no breaks, defects, signs of cracking or abrasions. | | | 3.4 | defects, signs of cracking or abrasions. Endurance testing In order to ascertain the satisfactory behavior of a buffer in service it is necessary to check by, carrying out an endurance test. After static characteristics test the endurance test must be performed on same assembly at impact test bench or on a press having chart recording facility. For endurance test a sinusoidal wave form of cyclic stroke C1 applied 3000 cycles corresponding of stored energy of 0.25 We, stroke C2 will be applied 1200 cycles corresponding of stored energy of 0.50 We and C3 will be applied 200 cycles corresponding of stored energy of compression shall be 6 cycles per minute. We represents the maximum value of stored energy corresponding to 30 kJ buffer spring assembly. Number of compressions Stroke 3000 C1 1200 C2 200 C3 Static characteristics test will be again repeated after completion of endurance test. The energy stored by the buffer should be 80 % of the energy | Kindly refer Annex F for Endurance testing under service load for elastic system of EN 15551. Note: - For Prototype testing Only. | It should be done at the time of product approval. This should be part of type test and not be part of regular purchase inspection. | Detailed study of the endurance test is required. Hence at this stage para 3.4 has been deleted to revert as original Rev.00. | | 3.5 | Mechanical characteristics after clamping The compression/ displacement curve after clamping of the spring assembly at designed installed height for a minimum of 72 h at 230 C ± 20 C shall be between the limiting curves specified in firm's drawing. | | The load/ deflection characteristics after clamping of the spring assembly at installed height for a minimum of 72 h at 23° C ± 2° C shall conform to the requirements of para 3.2 (refer 2.2.1 of UIC 827-1. | these characteristics. Hence at
this stage para 3.5 has been | |-----|---|--|---|---| | 3.6 | Characteristics after dynamic stresses As per para 2.3.2 of UIC-827-1 | Kindly refer Annex E for
Dynamic characteristics and
clause no. 5.5.3 as per EN
15551 | This should be part of type test and not part of regular inspection. | Detailed study is required in this matter. Accordingly para 3.6 has been Deleted. | ## **Physical Properties** | S
N | Property | Test
Method | Unit
s | Permis
sible
Limit | |--------|---|---|------------|--------------------------| | 1. | Tensile
Strength | ISO 37 or
Equivalent
BIS
standard | kg/c
m2 | 250
(Min) | | 2. | Elongation at
Break | ISO 37 or
Equivalent
BIS
standard | % | 350
(Min) | | 3. | Modulus at 200
% Elongation at
Machin speed
200mm/ min | ISO 37 or
Equivalent
BIS
standard | kg/c
m2 | 150
(Min) | | 4. | Compression Set after 25 % compression for 24 hours at 700 ± 10°C | ISO 815/
ASTM D
395 or
Equivalent
BIS
standard | % | 30
Max | | 5. | Compression Set after 25 % compression for 24 hours at -30° ± 1°C measured after stabilising for 03 minute at - 30° C | ASTM D
1229 or
Equivalent
BIS
standard | % | 55
Max | | 6. | Ash Content | IS-3400
Pt.22 | % | 0.5
Max. | Change in properties after Accelerated Ageing at 70° ± 1°C for 7 days | Change in Tensile | ± 20 % Max. | |---------------------|-------------| | Strength at Break | | | Change in | ± 30 % Max. | | Elongation at Break | | | Change in 200% | ± 20 % Max. | | Modulus | | As per Annex C of EN 15551 Table C.1 the test which are applicable for TPE are. - Shore hardness D according to approval. EN ISO 868 Our appro - 2. Compression set after 25 % compression for 24 h at 50 °C according to ISO 815-1 - 3. Compression set after 25% compression for 24h at -30°C after stabilizing for 3min. at -30°C measured according to ISO 815-2 at ambient temperature. As per table C.2 of EN 15551 static characteristic test is to be done only during prototype. ### **Physical Properties** Hardness of the material should be approved at the time of product approval. Our approved Hardness of TPE material is | S
N | Property | Test
Metho | Units | Permissible
Limit | |--------|--|---|------------|---| | 1. | Tensile
Strength | d
ISO 37
or
Equivale
nt BIS | kg/cm
2 | 250
(Min) | | 2. | Elongation at
Break | standard ISO 37 or Equivale nt BIS standard | % | 350
(Min) | | 3. | Modulus at 200
% Elongation at
Machin speed
200mm/ min | ISO 37
or
Equivale
nt BIS
standard | kg/cm
2 | 150
(Min) | | 4. | Compression Set after compression as applicable according to the "Hardness of the TPE material for 24 hours at $70^{\circ} \pm 1^{\circ}\text{C}$. In our case for a "Hardness" of 64 Shore D, the compression is 10 % as per ISO 815 | ISO 815-
1/ASTM
D 395 or
Equivale
nt BIS
standard | % | Max At present we are testing as per ASTM D 395, test method A, compressi on set under constant force which applicable for hard materials | | 5. | Compression Set after 25 % compression as applicable according to the "Hardness of the TPE material for 24 hours at - 300 ± 10C and measured after stabilising for 03 minute at - 300 C In our case for a "Hardness" of 64 Shore D, the compression is 10 % as | ISO 815-
2 or
Equivale
nt BIS
standard
IS 3400
(Part
10/Sec2)
:2022 | % | 90
Max. | | | per ISO 815 | | |] | 64+/- 5 Shore Detailed study is required in this matter. Hence at this stage para 3.7 has been Deleted to revert as original Rev.00. 3.7 | 4.1 | The firm has to submit Internal test results of physical properties and manufacturing processes used for manufacturing buffer TPE spring pads. | proprietary & patented that why we are not able to provide the manufacturing process. We will provide Internal test report as per EN 15551. | | No change required | |-----|---
---|------------------|--| | 4.2 | Firm should be either manufacturer of TPE spring pads or authorized representative of OEM (who holds IPRs / Design) having the MOU / Technology Collaboration Agreement / License Agreement which is valid for sufficient period i.e. minimum five years. Firm should submit valid authorization document /MOU to RDSO at the time of application of fresh vendor registration and at the time of renewal as the case may be. | | Noted & Accepted | Para 4.5 and 4.2 merged and revised as under: Firm should be either manufacturer of TPE spring pads or authorized representative of OEM of TPE spring pads (who holds IPRs / Design) having the MOU / Technology Collaboration Agreement / License Agreement which is valid for sufficient period i.e. minimum five years. Firm should submit valid authorization document /MOU to RDSO at the time of application of fresh vendor registration. The spring pad manufacturer shall have a suitable tie-up in the form of a written Memorandum of Understanding (MOU) with the raw material supplier covering supplies and technical support. Firm should submit the same to RDSO at the time of application for vendor registration. | | 4.3 | All metallic parts of spring pad assembly should be coated with corrosion resistant material. | | Noted & Accepted | No Change required. | |-----|--|--------------------|------------------|-----------------------------| | 4.4 | The surface of the elastomer parts shall be smooth and shall free from cracks, air bubbles, surface streaks, splash marks, pinholes, crazing, blistering, bulges or burrs. All the edges shall be neatly finished and free from flash. | | Noted & Accepted | No Change required. | | 4.5 | In the time of application for vendor registration, the spring pad manufacturer shall have a suitable tie-up in the form of a written Memorandum of Understanding (MOU) with the raw material supplier covering supplies and technical support. Firm should submit the same to RDSO. | | Noted & Accepted | Merged with para 4.2 above. | | 4.6 | Use of regenerated / re constituted material is not permitted. | Noted and complied | Noted & Accepted | No Change required. | | 6.1 | Marking on TPE spring pads shall be in an area not subjected to wear or stress concentration, if possible, where they can be readily seen without removal of pads. Marking on all components of spring pad assembly shall have manufacturer initials, serial number, month & year of manufacturing. The manufacturer shall ensure that marking details are legible and are of good quality, which shall remain legible throughout the entire service life of spring pad assembly and its components. | Noted and complied | Marking on TPE spring pads shall be in an area not subjected to wear or stress concentration. Marking on the spring pad assembly shall have manufacturer initials, serial number, month & year of manufacturing | revised as under: | |-----|--|--------------------|--|--| | 8.0 | PREFERENCE TO MAKE IN INDIA The Govt. of India policy on "Make in India" shall apply. | Noted and complied | All components of our Buffer Pad
Assembly are manufactured in
INDIA. | No change required. | | 9.0 | VENDOR CHANGES IN APPROVED STATUS All the provisions contained in RDSO's ISO procedures laid down in document no. QO-D-8.1-11(latest), dated 07.07.2023 (Titled "Vendor-changes in approved status) and subsequent versions/amendments thereof, shall be binding and applicable on the successful vendor/vendors in the contracts floated by Railways to maintain quality of products supplied to Railways. | Noted and complied | Noted & Accepted | ISO document date has removed and latest word added because RDSO ISO document revised regularly VENDOR CHANGES IN APPROVED STATUS All the provisions contained in RDSO's ISO procedures laid down in document no. QO-D-8.1-11(latest), (Titled "Vendor - changes in approved status) and subsequent versions/amendments thereof, shall be binding and applicable on the successful vendor/vendors in the contracts floated by Railways to maintain quality of products supplied to | | | | | | | Railways. | |--------------------------|--|----------------|-------------|-----------------------------------|---| | Section
B
Para 1.0 | The firm shall be ISO 9001 certified organization | Noted and comp | olied | We are ISO certified organization | No Change. | | 9.0 | The polymer pad manufacturer should have at least the following testing facilities installed in the laboratory with controlled temperature and humidity for carrying out various tests specified under Para 3: a) At least one injection moulding machine and one set of mould. b) Tensile Testing Machine of adequate capacity c) Load Compression Testing Machine of suitable capacity d) Equipment for humidity control of laboratory e) Hardness tester f) Melting Point Apparatus g) Muffle Furnace h) Melt Flow Index Tester i) One Rheometer | Not Applicable | Rheometer i | s not required for TPE materials | Agreed that Rheometer is not required for TPE materials. Requirement of injection molding has been removed as it is not a testing facility. Accordingly para 9.0 has been revised as: The polymer pad manufacturer should have at least the following testing facilities installed in the laboratory with controlled temperature and humidity for carrying out various tests specified under Para 3: a) Tensile Testing Machine of adequate capacity b) Load Compression Testing Machine of suitable capacity c) Equipment for humidity control of laboratory d) Hardness tester e) Melting Point Apparatus f) Muffle Furnace g) Melt Flow Index Tester | re-2 Annexu Prototype Inspection test Plan of long life spring pad assembly (SK.DL-4726) Items Mat Specifie Observati Remark erial d Value on IS:2062 Gr-E 250 Washer In house testing/ C=0.20 % WTC to max, Mn=1.50 checked %max from NABL Si=0.40 max,S=0. approved 040%max Laborato P=0.040 %max IS:1030 2. Gr- 280-520 W Destructi C=0.25 % on Tube max, mn=1.20 %max Si=0.60 max,S=0. 035%max P=0.040 %max IS:2062 Interm Fe410 WA. Given in RDSO Spec.no. MP.0.41 00.07 IS:1875 CL- 4 Spindle C=0.4 0 % -0.50% ,Si=0.1 5 % -0.35% Mn = 0.60 0.90%. S=0.04 max, 0.04 % max OR EN8 C=0.3 5 %-0.45%, Si = 0.05%-0.35% Mn = 0.60 % 1.00%, S= 0.06% max, P=0.06 %max Ø170±2.5 Intermediate Disc: IS:2062 Gr-E250 C (Approved from RDSO) | SN | Items | | Material approved | |-----|--------------------------|--
---| | | | Specified | in our product
drawing | | 1. | Washer | IS:2062 Gr-E 250 C
C=0.20 % max,
Mn=1.50%max
Si=0.40
max,S=0.040%max
P=0.040% max | IS:2062 Gr-E 250
Quality A
Our drawing is
approved | | 2. | Destructi
on Tube | IS:1030 Gr- 280-
520 W C=0.25 %
max,
mn=1.20%max
Si=0.60
max,S=0.035%max
P=0.040%max | IS:2062 Gr-E 250
Quality A
Our drawing is
approved | | | Interm
ediate
Disc | IS:2062 Fe410 WA.
Given in RDSO
Spec.no.
MP.0.41.00.07 | IS:2062 Gr-E 250
Quality A
Our drawing is
approved | | 3. | Spindle | IS:1875 CL- 4
OR EN8 | IS:1875 CL- 4 | | 4. | | Ø170±2.5 mm | Ø170±2.5 mm | | 5. | | R15 mm | R15 mm | | 6. | | R10 mm | R10 mm | | 7. | Buffer | Ø87±2.5 mm | Ø87±2.5 mm | | 8. | sprin | R6 mm | R6 mm | | 9. | g pad | Ø170±2.5 mm | Ø170±2.5 mm | | 10. | asse
mbly | G = Ø101(+01 /-0.0)mm | G = Ø101(+01 /-
0.0)mm | | 11. | | Preload: 10-15 kN | | | 12. | | Polymer pad: TPE pads
assembly as per
approved firm drawings | | Agreed with M/s Prag & M/s Surlon Durel. Materials (of firms) already approved by RDSO for washer, destruction tube & intermediate disc has been included in check sheet. Title of check sheet has been changed in order to use check sheet for prototype and regular inspection both. Regular/ Prototype Inspection test Plan of long life spring pad assembly (SK.DL-4726) | SN | Items | Mate | Specified Valu | |----------|--------------------------|---|------------------------------------| | | | rial | | | 1. | Washer | IS:2062 Gr-
E 250 A/ E
250 C | WTC to be checked from | | 2. | Destructi
on Tube | IS:1030 Gr-
280-520 W/
IS:2062 Gr-
E 250 A | NABL
approved
Laboratory | | | Interm
ediate
Disc | IS:2062 E
250 A/ E
250 C | | | 3. | Spindle | IS:1875
CL- 4
OR EN8 | | | 4. | | - | Ø170±2.5 mm | | 5. | | - | R15 mm | | 6. | | - | R10 mm | | 7. | | - | Ø87±2.5 mm | | 8. | Buffer | - | R6 mm | | 9. | sprin | - | Ø170±2.5 mm | | 10
11 | g pad
asse | -
Length | G = Ø101(+01 /-
H=584 (00/+5) m | | 12 | mbly | Preload | 10-15 kN | | 5. | | - | R15 mm
R10 mm | | | | | | | | | | | 1 | 3 | Polymer pad | TPE pads assem | |--------|--------------------------|--|--|--|--|-------------------|--|--|----------------|----------------------------|-------------------|-------------------------------|--|------------------------------------|---------------------------------|---|---| | 6. | - | _ | Ø87±2.5 | | | | | | | | | | | - 11 - | | | as per approved | | 7. | | | mm | | | | | | | | | | | | | | firm drawings. | | 8. | Buffer | - | R6 mm | | | | | | | | | | | | | | Th | | 9. | sprin | - | Ø170±2.5
mm | | | | | | | | | | | 1 | 4 | All components of spring pa | The surface o
elastomer par
dshall be smoo | | 10. | g pad
asse
mbly | - | -1
G =
Ø101(+01
/-0.0)mm | | | | | | | | | | | | | assembly | and having no
cracks,pitting
bulges, slits o
burrs. All meta | | 11. | | Length | H=584
(00/+5) | | | | | | | | | | | | Visual | | parts of sprin | | 12. | 1 | Preload | mm
10-15 kN | | | G . | – Ø101/±0 | 01 /-0.0)mm | | | | | | | | | should be free
from cracks, | | 13. | | Polymer
pad | TPE pads
assembly
as per
approved | P.O. No. and quantity to | | G . | _ છ101(+0 | 71 7-0.0)111111 | | | | | | | | | sharp edges,
burrs & coate
corrosion res | | | | | firm
drawings | be
matched
with | | | | | | | | | | | | | material. | | | | | | WTC of
firm | | | | | | | | | | G | = Ø101(| d correcte
(+01 /-0.0)
nical error |)mm | easor | 1. | | | S
N | Propert | Test | Sample | Permissible Limit | · | S
N | Property | Comment | | | | | | De
thi | etailed
is mat | study is
ter. Hen | ice at th | | S
N | Propert
y | Test
Metho | Sample
Size | Permissible Limit | | N | Property Visual | | Гѕ | Propert | Toet | | Permissible Limit | De
thi | etailed
is mati | study is
ter. Hen
is para | ice at th | | S N | • | Metho | | The surface elastomer par | of
rts | | | Comment Noted &complied | SN | Propert
y | Test
Metho | Sample
Size | Permissible Limit | De
thi | etailed
is mati | study is
ter. Hen | ice at th | | S N | у . | Metho
d | | The surface elastomer par shall be smoo and having reacks, pittin bulges, slits | of
rts
oth
no
ng,
or | 1. | | | S N | | | Size | The surface of elastomer parts shall be smooth | De
thi
sta
re
"T
As | etailed is mati age th vised as | study is
ter. Hen
is para
s under:
sts:
ara 3.0(| has bee | | S N 1. | у . | Metho
d | Size | The surface elastomer par shall be smoo and having reacks, pittin | of
rts
oth
no
og,
or
tal
rts | 1.
2. | Visual | Noted &complied Not acceptable for elastomeric pad. Kindly refer Annex C | S N | У | Metho
d | | The surface of elastomer parts shall be smooth and having no cracks, pitting, bulges, slits or burrs. All metal | De
thi
sta
re
"T
As | etailed is mati age th vised as | study is
ter. Hen
is para
s under: | has bee | | S N | у . | Metho
d | Size | The surface elastomer par shall be smoo and having 1 cracks, pittin bulges, slits burrs. All met of spring par pad assemb should be fre from crack sharp edge burrs & coate | of
rts
oth
no
no
ng,
or
rts
otly
ees
scs,
ees, | 1.
2.
3. | Visual Tensile Strength | Noted &complied Not acceptable for elastomeric pad. Kindly refer Annex C of EN 15551 standard Not acceptable for elastomeric pad. Kindly refer Annex C | S _N | У | Metho
d | Size | The surface of
elastomer parts
shall be smooth
and having no
cracks, pitting,
bulges, slits or | De
thi
sta
re
"T
As | etailed is mati age th vised as | study is
ter. Hen
is para
s under:
sts:
ara 3.0(| has bee | | S N | у . | Metho
d | Size | The surface elastomer par shall be smoo and having a cracks, pittin bulges, slits burrs. All met of spring pan pad assemb should be fre from crack sharp edge burrs & coatt with corrosic resistant | of
rts
oth
no
no
ng,
or
rts
otly
ees
scs,
ees, | 1. 2. 3. 4. 5. | Visual
Tensile Strength Elongation at Break Modulus at 200 % Elongation at Machin speed 200mm/ min Compression Set after 25 % | Noted &complied Not acceptable for elastomeric pad. Kindly refer Annex C of EN 15551 standard Not acceptable for elastomeric pad. Kindly refer Annex C of EN 15551 standard Not acceptable for elastomeric pad. Kindly refer Annex C of EN 15551 standard Compression Set after 25 % compression for | S N | У | Metho
d | Size | The surface of elastomer parts shall be smooth and having no cracks, pitting, bulges, slits or burrs. All metal of spring parts pad assembly should be frees from cracks, sharp edges, | De
thi
sta
re
"T
As | etailed is mati age th vised as | study is
ter. Hen
is para
s under:
sts:
ara 3.0(| required ince at this has been section Ann | | 1. 2. | у . | Metho
d | 10Nos. | The surface elastomer par shall be smoo and having a cracks, pittin bulges, slits burrs. All met of spring par pad assemb should be fre from crack sharp edge burrs & coate with corrosic | of
rts
oth
no
ug,
or
tal
rts
oly
ees
es,
eed
oon | 1. 2. 3. 4. 5. | Visual Tensile Strength Elongation at Break Modulus at 200 % Elongation at Machin speed 200mm/ min Compression Set after 25 % compression for 24 hours at 700 ± 1 100 | Noted &complied Not acceptable for elastomeric pad. Kindly refer Annex C of EN 15551 standard Not acceptable for elastomeric pad. Kindly refer Annex C of EN 15551 standard Not acceptable for elastomeric pad. Kindly refer Annex C of EN 15551 standard Compression Set after 25 % compression for 24 hours at 50° ± 1°C Kindly refer Annex C of EN 1551 standard | S N | У | Metho
d | Size | The surface of elastomer parts shall be smooth and having no cracks, pitting, bulges, slits or burrs. All metal of spring parts pad assembly should be frees from cracks, | De
thi
sta
re
"T
As | etailed is mati age th vised as | study is
ter. Hen
is para
s under:
sts:
ara 3.0(| has bee | | 1. | Visual Tensile Strength | Method
d
Eye | 10Nos. | The surface clastomer par shall be smoo and having a cracks, pittin bulges, slits burrs. All met of spring par pad assemb should be fre from crack sharp edge burrs & coate with corrosic resistant material. | of
rts
oth
no
ug,
or
tal
rts
oly
ees
es,
eed
oon | 1. 2. 3. 4. 6. | Visual Tensile Strength Elongation at Break Modulus at 200 % Elongation at Machin speed 200mm/ min Compression Set after 25 % compression for 24 hours at 70 ± 1°C Compression Set after 25 % compression Set after 25 % compression for | Noted &complied Not acceptable for elastomeric pad. Kindly refer Annex C of EN 15551 standard Not acceptable for elastomeric pad. Kindly refer Annex C of EN 15551 standard Not acceptable for elastomeric pad. Kindly refer Annex C of EN 15551 standard Compression Set after 25 % compression for 24 hours at 50° ± 1°C Kindly refer Annex C of EN 1551 standard Compression Set after 25 % compression Set after 25 % compression for 24 hours at 30° ± 1°C Vindly refer Annex C of EN 1551 standard | 1. | y Visual | Metho
d
Eye | 10Nos. From 1 Nos. | The surface of elastomer parts shall be smooth and having no cracks, pitting, bulges, slits or burrs. All metal of spring parts pad assembly should be frees from cracks, sharp edges, burrs & coated with corrosion resistant | De
thi
sta
re
"T
As | etailed is mati age th vised as | study is
ter. Hen
is para
s under:
sts:
ara 3.0(| has bee | | 1. | y . Visual . Tensile | ISO 37 or Equivalent BIS standard | 10Nos. | The surface elastomer par shall be smoo and having 1 cracks, pittin bulges, slits burrs. All met of spring par pad assemb should be fre from crack sharp edge burrs & coate with corrosic resistant material. | of
rts
oth
no
ug,
or
tal
rts
oly
ees
es,
eed
oon | 1. 2. 3. 4. 5. 6. | Visual Tensile Strength Elongation at Break Modulus at 200 % Elongation at Machin speed 200mm/min Compression Set after 25 % compression for 24 hours at 700 ± 10°C Compression for 24 hours at 300 ± 10°C measured after | Noted &complied Not acceptable for elastomeric pad. Kindly refer Annex C of EN 15551 standard Not acceptable for elastomeric pad. Kindly refer Annex C of EN 15551 standard Not acceptable for elastomeric pad. Kindly refer Annex C of EN 15551 standard Compression Set after 25 % compression for 24 hours at 50° ± 1°C Kindly refer Annex C of EN 1551 standard Compression Set after 25 % compression for 24 hours at 30° ± 1°C kindly refer Annex C of EN 1551 standard Compression Set after 25 % compression for 24 hours at -30° ± 1°C measured after stabilizing for 03 minute at -30° C | 2. | y Visual Tensile Strength | Metho
d
Eye | 10Nos. From 1 Nos. Test Slab | The surface of elastomer parts shall be smooth and having no cracks, pitting, bulges, slits or burrs. All metal of spring parts pad assembly should be frees from cracks, sharp edges, burrs & coated with corrosion resistant material. | De
thi
sta
re
"T
As | etailed is mati age th vised as | study is
ter. Hen
is para
s under:
sts:
ara 3.0(| has bee | | 1. | Visual Tensile Strength | ISO 37 or Equivale nt BIS standard FQuivale nt BIS standard ISO 37 or Equivale standard ISO 37 or Equivale nt BIS standard | 10Nos. 10Nos. | The surface elastomer par shall be smoo and having a cracks, pittin bulges, slits burrs. All met of spring par pad assemb should be fre from crack sharp edge burrs & coate with corrosic resistant material. 250 (Min) | of
rts
oth
no
ug,
or
tal
rts
oly
ees
es,
eed
oon | 1. 2. 3. 4. 5. 6. | Visual Tensile Strength Elongation at Break Modulus at 200 % Elongation at Machin speed 200mm/ min Compression Set after 25 % compression for 24 hours at 700 ± 10°C Compression Set after 25 % compression for 24 hours at -30° ± 10°C | Noted &complied Not acceptable for elastomeric pad. Kindly refer Annex C of EN 15551 standard Not acceptable for elastomeric pad. Kindly refer Annex C of EN 15551 standard Not acceptable for elastomeric pad. Kindly refer Annex C of EN 15551 standard Compression Set after 25 % compression for 24 hours at 50° ± 1°C Kindly refer Annex C of EN 1551 standard Compression Set after 25 % compression for 24 hours at 50° ± 1°C kindly refer Annex C of EN 1551 standard Compression Set after 25 % compression for 24 hours at 30° ± 1°C measured after stabilizing for 03 | 1. | y Visual Tensile | Metho
d
Eye | From 1 Nos. Test | The surface of elastomer parts shall be smooth and having no cracks, pitting, bulges, slits or burrs. All metal of spring parts pad assembly should be frees from cracks, sharp edges, burrs & coated with corrosion resistant material. | De
thi
sta
re
"T
As | etailed is mati age th vised as | study is
ter. Hen
is para
s under:
sts:
ara 3.0(| has bee | | | speed | standard | | | | of EN 15551 standard | 4. | Modulus at 200 % | ISO 37 | From 1 | 150
(Min) | | |--------|---|---|---|---|----------------------------------|---|--------|---|--|---|---|--| | | 200mm/
min | | | | Physical Prop | perties | | Elongation
at Machin | or
Equivale
nt BIS | Nos.
Test
Slab | (Min) | | | | Compressi
on Set
after 25 %
compressi | ISO 815/
ASTM D
395 or
Equivale | 02 Nos. | 30 % Max. | | | 5. | speed
200mm/
min
Compressi | standard | From | 50 Max. | | | 6. | on for 24
hours at
$70^0 \pm 1^0 C$
Compressi | nt BIS
standard | 02 Nos. | 55 % Max | | | | on Set
after 10 %
compressi
on for 24 | 1/ ASTM
D 395 or
Equivale
nt BIS | molded
Test
Button 1
Test | | | | | on Set
after 25 %
compressi
on for 24
hours at -
30° ± 1°C
measured | 1229 or
Equivale
nt BIS
standard | | | | | 6. | hours at 70° ± 1°C Compressi on Set after 10 % compressi on for 24 | ISO 815-
2 or
Equivale
nt BIS
standard | From
molded
Test
Button 1
Test . | 90 Max. | | | 7. | after
stabilising
for 03
minute at -
30° C
Ash | IS-3400 | 02 Nos. | 0.5 Max. | | | | hours at -
30° ± 1°C
measured
after
stabilizing
for 03 | IS 3400
(Part
10/Sec2)
:2022 | | | | | | ysical F | Pt.22
Properti | es | | | | 7. | minute at -
30° C
Ash
Content | IS-3400
Pt.22 | 02 Nos.
from
test | 0.5 Max. | | | | | | | | | | Ph | ysical Pr | | | | | | | | | | | | | S
N | Test | Sam
ple
Size | Test
Proced
ure | Pass/Fail Criteri | Detailed study is required in | | S
N | Test | Sam
ple
Size | Test
Proced
ure | Pass/Fail
Criteria | Flexibility Test | Not acceptable for elastomeric pad | 1. | Capacit
y test | Type test to be done at the | Compres
sive load
on a test
bench/
press up | > 60 % | this matter. Hence at this stage this para is deleted. | | 1. | Capacit
y test | 01 No.
/ lot | Compres
sive load
on a test
bench/ | 1000 KN
End load
Energy | Fridure need test | Kindly refer Annex C of
EN 15551 standard | | | time
of
produ
ct | to 105
mm
stroke | Dynamic energy
test
Stroke : 105 mm | | | | | | press up
to 105
mm
stroke | absorption
> 60 %,
Stroke :
105 mm | Endurance test | Noted and complied Refer Annex F as per EN 15551 standard | 2. | static | appro
val
01 No. |
Para | Para 3.2 | | | 2. | static
Charact | 01 No.
/ lot | Para
3.2 | Para 3.2 | Characteristics after dynamic | Noted and complied
Refer Annex E as per EN | 3. | Charact
eristics
Flexibili
ty Test | / lot
01
Nos. / | 3.2
Para
3.3 | After the tests the rings shall | | | 3. | eristics
Flexibili
ty Test | 05
Nos. /
lot | Para
3.3 | After the tests the rings shall | stresses dynamic Characteristics | Noted and complied Refer Annex E as per EN | | | lot | | show no breaks
,defects, signs
of cracking or
abrasions. | | | | | | | show no
breaks,
defects,
signs of
cracking or | | 15551 standard | | | | | | | | 4. | Endur | Туре | Para | | |-----|--------------|--------|------|------------------------| | | ance | test | 3.4 | 1. | | | test | | | Static | | | | | | characterist | | | | | | ics again | | | | | | repeated | | | | | | after | | | | | | completion | | | | | | of | | | | | | endurance | | | | | | test. | | | | | | Energy
stored by | | | | | | buffer | | | | | | should be | | | | | | at least | | | | | | equal to | | | | | | 80% of | | | | | | energy | | | | | | stored | | | | | | before | | | | | | endurance | | | | | | test. | | | | | | 2. After the | | | | | | tests the | | | | | | rings shall
show no | | | | | | breaks, | | | | | | defects, | | | | | | signs of | | | | | | cracking or | | | | | | abrasions. | | 5. | Mecha | 01 | Para | Compressi | | ٥. | nical | Nos./I | 3.5 | on curve to | | | charac | ot | | be within | | | teristic | | | limit as | | | s after | | | specified in | | | clampi | | | para 3.2 | | | ng | | | | | 6. | Chara | Type | Para | UIC-827 | | | cteristi | test | 3.6 | | | | CS | | | | | | after | | | | | | dynam | | | | | | ic
stress | | | | | | es | | | | | 7 | dynam | | | | | ' | ic | Type | UIC- | UIC-526 | | | Chara | test | 526 | | | | cteristi | | | | | | CS | | | | | 1 1 |